Functional fuzzy clusterwise regression analysis

نویسندگان

  • Tianyu Tan
  • Hye Won Suk
  • Heungsun Hwang
  • Jooseop Lim
چکیده

We propose a functional extension of fuzzy clusterwise regression, which estimates fuzzy memberships of clusters and regression coefficient functions for each cluster simultaneously. The proposedmethod permits dependent and/or predictor variables to be functional, varying over time, space, and other continua. The fuzzy memberships and clusterwise regression coefficient functions are estimated by minimizing an objective function that adopts a basis function expansion approach to approximating functional data. An alternating least squares algorithm is developed to minimize the objective function. We conduct simulation studies to demonstrate the superior performance of the proposed method compared to its non-functional counterpart and to examine the performance of various cluster validity measures for selecting the optimal number of clusters. We apply the proposed method to real datasets to illustrate the empirical usefulness of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularized fuzzy clusterwise ridge regression

Fuzzy clusterwise regression has been a useful method for investigating cluster-level heterogeneity of observations based on linear regression. This method integrates fuzzy clustering and ordinary least-squares regression, thereby enabling to estimate regression coefficients for each cluster and fuzzy cluster memberships of observations simultaneously. In practice, however, fuzzy clusterwise re...

متن کامل

Fuzzy clusterwise linear regression analysis with symmetrical fuzzy output variable

The traditional regression analysis is usually applied to homogeneous observations. However, there are several real situations where the observations are not homogeneous. In these cases, by utilizing the traditional regression, we have a loss of performance in fitting terms. Then, for improving the goodness of fit, it is more suitable to apply the so-called clusterwise regression analysis. The ...

متن کامل

PCR and PLS for Clusterwise Regression on Functional Data

Clusterwise regression is applied to functional data, using PCR and PLS as regularization methods for the functional linear regression model. We compare these two approaches on simulated data as well as on stock-exchange data.

متن کامل

Clusterwise PLS regression on a stochastic process

In this paper we propose to use the PLS approach for clusterwise linear regression in the particular case where the set of predictor variables forms a L2-continuous stochastic process {Xt}t∈[0,T ]. We have adapted the k-means algorithm to this case and we give necessar conditions for its convergence. The results of an application of the clusterwise PLS regression to stock-exchange data are comp...

متن کامل

Variable Neighborhood Search for Least Squares Clusterwise Regression

Clusterwise regression is a technique for clustering data. Instead of using the classical homogeneity or separation criterion, clusterwise regression is based upon the accuracy of a linear regression model associated to each cluster. This model has many advantages, specially for the purpose of data mining, however, the underlying mathematical model is difficult to solve due to its large number ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Adv. Data Analysis and Classification

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013